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linearly asymptotically stable critical point in 0 without

leaving Q. We give a proof, based on the standard probabilistic

interpretation of uc, of an exponential leveling property:

sup u C(x) - u (y)[ < e- 6/ 6 for some 6 > 0 which depends on
x,yeK

the compact set K C 0.
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EXPONENTIAL LEVELING FOR STOCHASTICALLY

PERTURBED DYNAMICAL SYSTEMS

I: Introduction

Consider a deterministic system described by an ordinary

differential equation in IRd:

(1.1) dx (t) = b(x (t))dt.

A natural model for the behavior of this system, when subjected

to a small stochastic perturbation, is the diffusion process

described by the Ito equation

(1.2) dx'(t) = b(x (t))dt + /_E o(x (t))dwt,

St being a Brownian motion in Id. Applications of this type of

model can be found in Ludwig [6], Schuss [10] and Matkowsky and

Schuss [9]. Several aspects of the asymptotic behavior of x (.)

as e -. 0 are of interest. Consider in particular a bounded

domain 0. If I denotes the exit time of x (.) from 0 and

E the expectation for the solution of (1.2) subject to x (0) x,x

then (under appropriate regularity assumptions)

E e

u (x) = E [f(x (zn))

is the solution of the Dirichlet problem
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(1.3) 0 =yE[ul = (X)uix + X bi(x)uxi in 9

with ul = f.

(Here a = oT). The behavior of ue as E + 0 depends, of

course, on the nature of the tmjectories of (1.1) which start in

s. One of the more interesting cases is when all deterministic

trajectories starting in p remain in Q and approach a unique

stable point, at the origin say. Because all continuous solutions

of the reduced equation

o b(x)u 
0

1 1

in Q are constant, one expects that u approaches a constant

function, or at least somehow "levels out". We prove here, under

modest assumptions, that this leveling does occur and at an ex-

ponential rate:

sup JuC(x) uC(y)j 5 e
x,yEK

for any compact K c n, some 6 > 0 and all sufficiently small e.

In many cases much more is known. Matkowsky and Schuss [8]

presented a formal calculation to show that uE converges to a

constant function and derived a formula for what this constant should

be. Kamin [5] and Devinatz and Friedman [1] gave rigorous proofs

of this in cases where YE has a self-adjoint form

A 1 I



3

(1.4) Y [u]= e - "/ '/X x-U.ax. ij Xi,j 1 3

In [4] Kamin showed that the formal calculation of Matkowsky and

Schuss for (1.3) is correct provided the solutions of certain

auxiliary first order PDE's exist and are sufficiently smooth.

The fundamental work of Ventcel and Freidlin [12] also establishes

that u converges to a constant for (1.3) in the case that

the variational distance V(O,y) which is central to their

treatment attains its minimum over y E 3SI at a unique place.

Actually the YE in (1.4) is of a more general form than

(1.3):

(15 ) I a. .u + b u

with b -, b as E - 0. In this context the solutions u may

not converge to a constant. Indeed, in [1] the authors presented

the two examples

(1.6a) c(x+2)u" - x(x+2)u' = 0

(1.6b) E(x+2)u" + (6-x(x+2))u' = 0

on [-1,1], both with u(-l) = 0, u(l) = 1. They observed that

U I for (l.6a) and u -. for (l.6b). If we combine these

two examples as
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(1.6c) E(x+2)u" + (E: Sin( x(x+2))u 0,

we get an example of the type (1.5) for which u does not converge.

The result proved here is for -V of the form

Y C a u + I bu
1i,j l iXi xi

E Ea 0 b0
The a ,b are required to converge to ab as € + 0. This

form of y encompasses all the cases (1.3)-(1.6) mentioned.

The boundary function u 1 = f is allowed to be E-dependent

and is required only to be bounded (in both x and e) and

measurable (Borel), but need not converge with E.

Section 2 contains the technical assumptions and the statement

of the main theorem. Sections 3 and 4 are devoted to a bound on

hitting probabilities which is the cornerstone of our proof. The

proof of the theorem is given in Section 4 also. Section 5 contains

two additional remarks.
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II: Technical Assumptions and Statement of the Main Result

The domain Q -iR d is assumed to be bounded. To treat

u as the solution to an elliptic boundary value problem with

u I f a specified continuous function, one might also want

2to impose the requirement that DQ be C . The probabilistic
•S

definition (2.1) of u renders this unnecessary however. The

assumptions on the coefficients are as follows:
a 0

a) a (x), a (x) are Lipschitz (or just If6lder) continuous in x

uniformly in E, positive definite symmetric d x d

matrices on f and ac - a0  0 uniformly on1J

as S+ 0;

b) bc(x) and b0 (x) are in Cl( ), lbe-b0[ and

Ibx -bxl (i = 1,...,d) all converge to 0 uniformly
1i 1

on ff as E + 0;

c) for any solution to x0 (t) = b0 (x0 (t)) with x 0 (0) E Q,
o 0

x (t) E Ql for all t > 0 and lim x (t) = 0;

ab0 (0) t4+00

d) the matrix B = [--a-] is stable, i.e. all its

J
eigenvalues have negative real parts.

For a specified x E 0, x (t) is a Markov diffusion process with

x (0) = x and differential generator

a + bT ij ' j ax iax j i a

For definiteness, one can think of a ,b as being extended to

all of mRd the process xE5 ) then being obtained as below for

...............................
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all t < + . We are only concerned with x (t) for t <

however, which does not depend on this extention. If one likes,

x¢ (t) can be considered as the solution to a stochastic differ-

ential equation (see [7] or [11])

dx (t) = b'(xE(t))dt + VE ac (x (t))dwt, x (0) = x

if a = a (a e) where a is Lipschitz. Alternately,

x (t) can be discussed directly via the martingale problem

associated with Ys', [11]. (Continuity of coefficients is

sufficient for that treatment.)

The boundary functions f (x) are assumed to be bounded in

x and E > 0 and measurable on 30. The u (x) are now defined

by

(2.1) uE (x) = E [f5(x5(T))M

It can be shown that u E C 2() and satisfies

. [V  ] = 0 in 0.

Indeed, on any ball B with Bc 0 it is true that ue is the

Perron solution corresponding to the boundary data uSj . Since

Perron solutions are C2 on the interior of their domains, for

bounded measurable data, ([ 3 1, Theorem 6.11) it follows that
2( )

u E C (). The boundary behavior of u does not concern us;

only the boundedness in e,x is necessary for our arguments below.

'- ' - ., , , .. . ; r,,L ' -i
'

... [11--
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There is one more condition that we will need when proving

Theorem 2 below. In deriving (4.6) we will use

(2.2) bE (x-b 0(x) = o(l) as e + 0 uniformly in Q.

0We know that b (0) = 0, so the above will follow from the con-

vergence of b to b0  if the further condition bc(0) = 0
11

is true. Once we restrict our attention to x in a compact

K c 0, however, we can achieve b (0) = 0 without imposing any

further assumptions. The following argument accomplishes this:
0

from the stability of 0 with respect to b as in d) above and the uniform

convergence of bE to b0 one can deduce that (for sufficiently

small -) bE has a critical point 4 such that 4 - 0 as

c + 0. Change variables to y = x - 4 The new coefficients

a (y) = ac(y+4E) and b0(y) = b5 (y+4E) satisfy all of our

assumptions above as well as b(0) = 0. The only difficulty is
S

that the domains 0 - E are E-dependent. We can pass to a
S

subdomain Q' so that y E 0' implies x = y + e E Q and a

compact subset K? C Q' so that x E K implies y = x - 4E E K',

for sufficiently small E. Applying Theorem 1 to Q',K' we get

the same result as for Q,K. Taking the details of this argument
S

for granted, we assume in the following that b (0) = 0 and

consequently that (2.2) is true.

Here is our main theorem.

Theorem 1: Under the assumptions described above, for any compact

K 0 there exists 6 > 0 and E > 0 so that for all 0 < E < E0

_ LI
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sup lu (x) - u (y)I < e
x,y E K

Roughly, the reasoning behind the proof is that for small

x (t) should, with high probability, follow the deterministic
0

trajectory x (t) into the vicinity of the origin before making

its first excursion to the boundary 30. A precise probabilistic

estimate along these lines is established in the next two sections.

To apply the probabilistic estimate, we need to know a modulus of

continuity for ue. The following lemma establishes the modulus

that we need; the rescaling argument is the same one used by

Kamin [5].

Lemma 1: Let K c 02 be compact. Then there is a constant C

so that JVuC(x)J < CC -1/2 for all x E K and E < i.

Proof:
• "( 1/2

Make the change of varia = y = -/x. Then v (y) =

1/2
u E(E y) satisfies

1 1/2V +
S (y)V + E b(y)Vy" 0 for y E s'1 2 2.

1/ 2y) , - (Y1/2 E 1/2
The coefficients ),(y) = (-i/ b l b (E y) are

Holder continuous with respect to y uniformly in C. If we take r so that

B r(x) = {z: Ix-zi < r} c o whenever x E K, then B r(Y) C E-1/2

whenever y E E'1 /2K and e < 1. We can apply the basic Scahuder interior

estimate ([3], Theorem 6.2) to Br (y) for any y EC 1I/2K to
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conclude that IVv(y)l < C for all y E K for some constant C.

This implys the lemma after changing back to the original

variable x.

. . . ... ... , - - - O W N . 1 .I
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III: A Prototype: An Ornstein-Uhlenbeck Process

Before proving the estimate on hitting probabilities

of the next section, it is convenient to look at the special case

of an Ornstein-Uhlenbeck process with generator as in (3.1) below.

The proof of the general case rests on a comparison with the

function described by (3.4) and analyzed below.

RdIn IRd , d > 2, suppose that a > 0 is a constant and ;6(t)

is a diffusion process with differential generator

(3.1) F[u](x) = e Au(x) - ax'Vu(x).

Let T(r) be the hitting time of the sphere of radius r:

(3.2) 1(r) = inf{t > 0: 14 E (t)I = r.

Take a fixed R > 0 and, for r0 < jxi < R, define the hitting

probability

C E
(x) = Px [1(r 0 ) < 1(R); 1(r0 ) <

What we show is that there exists a positive constant 6 > 0

so that

-61/s -61/5

(3.3) Qr (x) > 1 - e whenever r0 > e and jxi < R.r 0 3

In words, for I 4E(0)l < 1 R we can let r4 0 exponentially

with - and at the same time have the probability that

. .......... .. ............. - .



1(ro) < T(R) converging to 1 exponentially fast. To prove this

we calculate Qr ('). By symmetry Q6 depends only on r = lxI.r r0

Thus Q (x) Q(r) where [Q(r)] 0 with Q(r0) 1, Q(R) = 0.

S e[Q(Ix[)] Q"(r) + [e d - Or]Q'(r)

or

.) r]Q'(r) 0; Q(r0) 1, Q(R) = 0.

For the above 8 = d - 1, but we will carry out the calculation

for arbitrary positive constants a,$.. Solving (3.4) gives

a 2
r- s ds

js-

Q(r) 1 i r0  a 2
*f e*E ds

R
If r0 < r < , then

2 2
S e ds J

r 0 _____ r0  R e£ _R

_r0  R

_2 1 R22

If log(r 0 ) > 1 then the preceding is < e 6 R.• - "(6 )
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Consequently, if 61 is slightly less than the minimum of
and all (slightly less so as to absorb the 0 ), then for

r0 > e and r < 1 R we have
0I3

(3.5) Q(r) > 1 e1 for sufficiently small E > 0.
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IV. The Hitting Probabilities in the General Case

Next, we prove that an estimate like (3. 3) holds for the

hitting probabilities of the process x£ (t). (E(r) now denotes

the time of first contact with the ball of radius r about the

origin for x (*).)

Theorem 2: For any compact K c 0 there exists 6 > 0 so that

for some 0 > 0 and all 0 < e < 0

-6/E -6/c
P x [(r 0 ) < 1] > 1 - e whenever x E K and r0 >

Proof:

We will first make an argument for an appropriate neighborhood

of the origin. The key to the proof is to use not the standard

Euclidean norm IxI but a different symmetric positive definite

quadratic form. By hypothesis, the matrix B = [;b(0)/ xj) is

stable. Lyapunov's Theorem on matricies implies that there exists

a unique symmetric positive definite matrix V which solves

BTV + VB = -I.

Define P(x) = [xTVx]1/2 For f E C 2R), a computation gives

that

(4.1) Y'-f(p(x))I f"(p), iaijPx f[xj + biPi
pJ Xi 1 7 ij x x P

VP() -V Px V + 1 1 V
- ' i xj p LkitXtkVkj
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The idea is to effect a comparison of each of the terms of

y' [f(p)] with those of W E[Q(r)] in (3.4). First,

~a P = xTVa Vx
ij Pxix xTvx

which is bounded above and below away from 0 on 9 - {0}. More-

over, these bounds can be taken to be independent of E sufficiently
E 0

small since a E a uniformly. Thus, there exists a constant

A > 0 so that

(4.2) A 1 < aijPxiPx < A in 0 - {0), all sufficiently small E.
13

Secondly,

(4.3) a EP a.V. xT va CVx C
ij a xx P 13 P p2 - P

for a positive constant C (again uniformly in E sufficiently

small). Thirdly,

b . x Tvbx ) v(b- ° )i ix i  P Cx) = P(x) P

Using bO(x) = Bx + o(Ixl) and b (x) - bO(x) lxlo(l) from

(2.2),we find that

b i U P'[* TVBx + o(IxlP + o(l)]
P 2•olx

a P.- 14.. + o(lxI) + o(1)].
P
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(The o(Ixl) is an lxi j 0 and is independent of E. The o(l)

is as E - 0 and is uniform in x.) The second equality is a con-

sequence of our choice of V. It follows that for some D,R and

E 0  all positive,

(4.4) b iP. < -DP(x) if P(x) < R and C < C.
1

(Also restrict R so that x E Q whenever P(x) < R.) Take

= DAT, 0 = AC and then Q(.) as in (3.2). Since Q' < 0,

(4.1)-(4.4) combined imply that, for E < E0 and P(x) < R.

(4.5) y E[Q(P(x))] > -A 1.Q"(P) + Q AC - 2 =.

Using T(r) for the hitting time of the set {x: P(x) = r} by

xC ('), (4.5) implies, either via the maximum principle or the

fact that Q(p(xe(t))) is a submartingale, that

PE [i(r0) < i(R)] > Q(P(x)).

If Y > 0 is an constant so that Y < P(x9 < Y-1, then

!(YrO) > T(ro) provided IxC(O) > rO. IF IxE(O)I < yR, then p(xE (0)) < R and

!(R) < TQ. Consequently, for r0 < Ixe(O)I < YR we have

pE )< S]>pE

Px [T(r0 < xl [T(Yr0) < !(R)] > Q(p(x)).

This is trivially true also if Ix E(O) < r0. The calculation of

Section 2 now implies the existence of 61 > 0 so that for all

0 < E < E0 and lxi < R
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(4.6) P [T(r 0 ) < 0l] 1 - /e if Yr 0 > e

The last step of the proof is to show that such an estimate

remains true for all x E K. By the strong Markov property

pE [1(r0) < T ] = E e[P (E [1(r 0 ) < T ; (-Y R) < 1fJ

>"(1-e /E ).PF[-E(. R) < IQ].
_> 1-ex 3

It is sufficient therefore to prove that for some 62 > 0 and

all x E K,

~ -621

(4.7) PC [E(! R) < I > 1 - e 2

Let 0 (t;x), C > 0, denote the solution of the deterministic

equation 0'(t) = b (O(t)) with 0(0) = x. Since K is

contained in the domain of attraction of the stable point 0,

there exist T,n > 0 so that if x E K then

y £ Ql whenever ly - 0(s;x)l < 2n for some 0 < s < T,

and

lyf < ' R whenever ly - 0O(T;x)I < 2n.

As c . 0, b converges to b0 uniformly in 0 and consequently

*C(t;x) converges to 00(t;x) uniformly for t E [0,T] and x E K.

Therefore, if E is sufficiently small and x E K it will be true

that
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y E Q whenever ly - OF(s;,x)l < i for some 0 < s < T,

and
YC

lyl < Y R whenever }y - * (T;x)I < n.

For such 6 and x E K,

P E T R)] < P [ sup I[F(s,x) - xE(s)I > n].x Q '3 X 0<s<T

Define

E(t) = xE (t) - x - b (xE (s))ds

= ,E J (xE(s))ds if x' is obtained from an Ito equation).
0

Gronwall's inequality implies that

sup 10CE(s;x) - xE(s)l < eMT  sup OE(S)j
[0,T] 0<s<T

where M is the Lipschitz constant for the bE(1 (uniform in C).

It is a standard argument, using exponential martingales, that

E f _k 2

x[ sup [0 (s)l > 9] < (2d)exp[2---T][0 ,T]2EA

where xT ac x < AI1xI2 ; see [11], equation (2.1), pg. 87 and proof for

instance. Combining these facts, for all x E K and e

sufficiently small,
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2 -2MT
p[t < t(X R)] < (2d)exp[-

This shows (4.7) and completes the proof.

Theorem 1 is now simple.

Proof (of Theorem 1):

Take any x E K and set r0  e (6 > 0 as in Theorem 2).

E Ea[uEx~xf)) Cf <-ro)

u (x) = E [u (x (a(ro))); (ro) < T] x].

Therefore,

u (x) -u(0) = E'[u((x (r))) u (0); 1(ro) < T]

+ Ee[f,(x,( - u (0); < U(r

(uC(x) - u (Ol < sup Iu (y) - u6 (o)I +
ly<r0

t 2 supIfl.Px[I. _(r0)]

< suplVu'l.r 0 + 2 suplf Ele 6 /

K ap

< Cc 1/2e 6/C+ 2 suplfle -6/C

The theorem now follows (with a new slightly smaller 6).
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V: Concluding Remarks

We have two simple observations to make in closing. The first

is regarding the case in which 9 contains several critical points

of (1.1). This has been discussed in the literature: [91, [12].
S S

Both u constant and u + a piecewise constant function are

possibilities now, depending on the Ventcel-Freidlin variational

distances between the critical points and 30. If x* is an

asymptotically stable critical point (replacing the origin in d)

of section 2) and Q* c 0 is its domain of attraction, then by

taking fC = u E on al * we can apply Theorem 1 to see that

leveling takes place exponentially fast in each such domain of

attraction.

Finally, we observe that the specification of boundary data

E
f is actually superfluous. All that matters in the proof is the

availabili'y of a bound in E for the u Theorem 1 could be

formulated as follows:

for K c 0 compact there exist 6 > 0 and e0 > 0 so that

whenever Y E [u) = 0 in 9 and E < EO9

(6.1) sup ju(x) - u(y)I < e- 61 suplul.
x,yEK

Define the exit measures on the Borel subsets of 3Q2 by

Tr (B) = P' [x' (T[)E B] .

The strong maximum principle implies that n and 7C are mutuallyx y
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absolutely continuous for x,y E 92. (6.1) implies that

f(s) (I - -{) 1T'(ds)~ < e-C lIf I 1

for all f bounded and measurable on 302. This is equivalent to

(~~~~ 1 ffEE
(6.2) 1 - y e for x,y E K, E < E0

d EI 1 0'
X L (7T)

x

In cases for which a Green's function exists (if Q and all the

coefficients are C 2  for instance) so that u Ccan be expressed

as

U E(x) G JaG(Xps)f E(s)ds,

then nT (ds) =G C(x,s)ds on M, and (6.2) becomes, for x,y E K,x

(6.3) f!G(x,s) -GE(y,s)!ds < e
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